تابع علامت

تابع با ضابطه زیر را تابع علامت می گوییم:
تصویر

لازم به ذکر است که این تابع را با نماد نشان می دهند که نماد آن از واژه انگلیسی sign اقتباس شده است که ریشه اصلی آن، از واژه یونانی signum به معنای علامت است.
همچنین ضابطه این تابع را برای X های مخالف صفر می توان اینگونه تعریف کرد:
در این تابع دامنه مجموعه اعداد حقیقی است و برد این تابع برابر است با: .
این تابع از معروف ترین توابع چند ضابطه ای است که نحوه عملکرد آن به این صورت است:
  • اگر متغییر x داده شده به تابع مثبت باشد آن را به عدد یک و اگر متغییر x داده شده به تابع منفی باشد آن را به منفی یک متناظر می کند و اگر متغییر داده شده x=0 باشد آن را به عدد صفر متناظر می کند. به عبارت دیگر این تابع هر عدد حقیقی مثبت را به یک، هر عدد حقیقی منفی را به منفی یک متناظر می کند و عدد صفر را هم به صفر متناظر می کند.
  • نمودار پیکانی زیر نحوه عملکرد تابع علامت(sgn) را نشان می دهد:
تصویر

  • با توجه به ضابطه این تابع نمودار آن به این صورت خواهد بود:
تصویر

  • بررسی ویژگی های تابع علامت

برهان: تابع را در نظر بگیرید:


که این نشان می دهد این تابع فرد است. همچنین نمودار این تابع نسبت به مبدا مختصات متقارن است که دلیل بر فرد بودن تابع است.

  • تابع علامت تابعی غیر یک به یک است.
برهان: در توابع چند ضابطه ای شرط اولیه برای یک به یک بودن تابع این است که هر ضابطه یک به یک باشد اما مشاهدی می شود در مورد تابع علامت این شرط برقرار نمی باشد. پس این تابع یک به یک نمی باشد.

برهان: می دانیم در بررسی پوشا بودن توابع چند ضابطه ای به این صورت عمل می کنیم که برد هر ضابطه را محاسبه کرده اجتماع آنها را بدست می آوریم. اگر حاصل با مجموعه انجام تابع برابر باشد تابع پوشا است. حال در تابع علامت اجتماع بردهای هر ضابطه برابر با مجموعه است(چرا؟).
و چون با مجموعه انجام تابع یعنی برابر است پس این تابع پوشا است.

سری مثلثاتی

توسعه نظریه سریهای مثلثاتی در 1822 ،با چاپ کتابی توسط فوریه آغاز شد.تحقیقات چندین ساله وی به گسترش نظریه وسیعی در مورد سریها منجر شدکه امروزه به نام خود وی معروف ،و از اهمیت بسیاری در ریاضیات ،علوم و فن برخوردار است.ایده اساسی این نظریه،معرفی توابع تناوبی یا دوره ای توسط توابع تناوبی(مثلثاتی) خاص است.

سری فوریه برای بررسی حرکات تناوبی در آکوستیک یا صوت شناسی،الکترودینامیک ،اپتیک یا نور شناسی، ترمودینامیک و غیره مورد استفاده قرار گرفته است.

در مهندسی الکتریک مسائلی چون رفتار بسامدی ،عناصر سوئیچینگ ،یا انتقال ضربه ها را میتوان به کمک سری فوریه حل کرد.

پیش بینی جزرومد در دریانوردی دارای اهمیت فراوانی است.از آنجا که اینها پدیده هایی تناوبی هستند از سری فوریه استفاده میشود و در تمام بندرهای مهم،وسائل مکانیکی چون پیش بینی کننده های جزر و مد ساخته میشود.امروزه کمتر شاخه‌ای از فیزیک،ریاضیات، یا صنعت و فن وجود دارد که در آن از سریهای فوریه استفاده نشود.

تعریف

سری توابع که جمله عمومی آن



با ضرایب ثابت و است سری مثلثاتی نامیده میشود. اگر این سری در بازهای از طول همگرا باشد،آنگاه از آنجا که توابع مثلثاتی تناوبی اند، به ازای جمیع مقادیر x همگراست و تابع تناوبی ی را نشان میدهد.

این تابع لزوما پیوسته نیست، و در واقع اغلب بین آنچه که توسط فرمول های مختلف داده شده است گسستگی هایی دارد.
از طرف دیگر،اگر این سری به طور یکنواخت همگرا باشد،آنگاه مجموع آن، ،پیوسته است. در این حالت میتوان ارتباطی بین ضرایب و و تابع مجموع به دست آورد.ضرب سری




در عاملهای کراندار یا که در آنها p عددی صحیح و نامنفی است اختلالی در همگرایی یکنواخت آن به وجود نمی آورد،بنابراین میتوان

و

را با استفاده از انتگرالگیری جمله به جمله سری یا محاسبه کرد
این انتگرالگیری ها شامل انتگرال های روی بازه توابع و و و اند.

اتحاد اویلر  و  اتحاد لاگرانژ

اتحاد اویلر


  • برهان:



  • صورتی دیگر از اتحاد اویلر:

  • برهان:



  • نتایج اتحاد اویلر:
    • اگر a+b+c=0 آنگاه
    • اگر a=b=c آنگاه

مثال:

همچنین اگر باشد آنگاه داریم:


اتحاد لاگرانژ



مثال:

منحنی های درجه دوم

 

دایره ، سهمی ، بیضی و هذلولی منحنی هایی هستند که معادله‌شان حالت‌های خاصی از معادله درجه دوم زیر است:



بطور مثال دایره:

-

از معادله درجه دوم فوق بدست آورد. در واقع خط راست هم حالت خاصی از معادله درجه دوم است هرگاه ولی این شرایط معادله درجه دوم را به یک معادله خطی بجای معادله درجه دوم بدل می‌کنند جملات جملات درجه دوم می‌باشند و در حال حاضر رابطه ذکر شده در تعریف را وقتی که لااقل یکی از این جملات درجه وجود داشته باشند بررسی خواهیم کرد.

تاریخچه

معادلات درجه دوم و اشکال آنها موارد مورد بحث در هندسه تحلیلی سه بعدی هستند. هندسه تحلیلی سه بعدی را ریاضیدانان قرن هفدهم میلادی از قبیل فرما ، دکارت و لاهید ابداع کردند. ولی دستگاه مختصاتی را که ما امروز به کار می‌بریم ، یوهان برنولی در فاصله‌ای به لایب نیتس در 1715 صورتبندی کرد. در قرن هجدهم ، آلکسی کلرو (1713-1765) و لئونهارت اویلر (1707-1783) برجسته ترین ریاضی‌دانانی بودند که هندسه سه‌بعدی را گسترش دادند.

بخصوص کلرو معلوم ساخت که یک رویه را می‌توان با معادله‌ای بر حسب سه مختصش نشان داد و برای توصیف خمی در فضا ، دو تا از این گونه معادله‌ها لازم است. او ایده‌هایش را در کتاب "تحقیق درباره خم‌های با خمیدگی مضاعف" در 1731 مطرح کرد وی در این کتاب معادلات چندین رویه درجه دوم از قبیل کرهاستوانه – هذلولیوار و بیضی‌وار را آورد. توجه او در نهایت معطوف به شکل زمین بود که فکر می کرد نوعی بیضیوار باشد. گاسپار موثر هندسه‌دان پیشرو قرن هجدهم زیرا مطالب زیادی درباره هندسه تحلیلی سه بعدی نوشت.
ادامه نوشته

حل معادله درجه سوم

معادلات درجه سوم برای اولین بار توسط ریاضیدانان هندسی در حدود 400 سال قبل از میلاد مورد توجه قرار گرفت. در بین ریاضیدانان پارسی، عمر خیام (1123-1048) راه حلی را برای حل معادله درجه سوم ابداع کرد. او در این روش با استفاده از هندسه نشان داد که چگونه با استفاده از روش هندسی می‌توان به جواب عددی معادله رسید با استفاده از جدول مثلثاتی. همچنین در حول و حوش قرن 16، یک ریاضیدان ایتالیایی به نام scipione، روشی را برای حل کلاسی از معادلات درجه سوم که به صورت می‌باشند را ادامه داد. او همچنین نشان داد که تمامی معادلات درجه سوم را می‌توان به صورت گفته شده کاهش داد.

هر معادله درجه سوم حقیقی حداقل یک جواب حقیقی دارد. این استدلال نتیجه مستقیم قضیه مقدار میانگین است.

روش کاردانو برای پیدا کردن ریشه‌های معادله درجه سوم

در ابتدا معادله داده شده را به فرم کلاسیک تبدیل می‌کنیم، همین معادله داده شده را به ضریب تقسیم می‌کنیم.
حال با تغییر متغیر: معادله را به فرم زیر تبدیل می‌کنیم.

بطوری که و معادله به دست آمده را معادله تقلیل یافته می‌نامیم.
حال فرض می‌کنیم که بتوانیم اعداد u و v را طوری پیدا کنیم که:

حل جواب معادله داده شده با فرض t=v-u به دست می‌آید این مطلب بطور مستقیم با تعقیب متغیر t در (2) قابل بررسی می‌باشد. به عنوان یک نتیجه از اتحاد معادله درجه سوم معادله

(3) قابل حل است. با حل معادله درجه دوم برای v که به دست می‌آید

با قرار دادن این مقادیر در 3 خواهیم داشت

که از حل این معادله که یک معادله درجه 2 از می‌باشد خواهیم داشت
حال چون و پس

دنباله

مجموعه اعداد زوج طبیعی را در نظر بگیرید اولین عضو این مجموعه عدد 2 است و n امین عضو آن 2n است.
حال مجموعه اعداد طبیعی را در نظر بگیرید: با کمی دقت متوجه می‌شویم که می‌توان یک تابع یک به یک از مجموعه اعداد طبیعی به مجموعه اعداد طبیعی زوج تعریف نمود که در عضو از مجموعه اعداد طبیعی را به یک عضو از مجموعه اعداد طبیعی زوج متناظر کند.(مانند شکل)
img/daneshnameh_up/3/35/sequence.jpg

اگر این تناظر را به صورت مجموعه زوج های مرتب بنویسیم خواهیم داشت: متوجه می‌شویم تابع f از مجموعه اعداد طبیعی به مجموعه اعداد طبیعی زوج، تابعی است یک به یک که هر عضو از دامنه خود را دو برابر می‌کند و به یک عضو از مجموعه اعداد طبیعی زوج متناظر می‌کند و می‌توان چنین ضابطه‌ای برای آن تعیین نمود:
حال در مثالی دیگر تابع را در نظر بگیرید. بیاید بجای اینکه به جای متغیر تابع عددی حقیقی قرار دهیم، متغیرهای طبیعی را جایگزین کنیم. در این صورت داریم:

مشاهده می‌کنید این تابع نیز هر عدد طبیعی را به عنوان ورودی دریافت می‌کند و آن را به یک عدد دیگر نسبت می‌دهد با این تفاوت که این تابع دیگر یک به یک نمی‌باشد و فقط بین اعداد طبیعی و مجموعه اعداد حقیقی یک تناظر بوجود می‌آورد.
نمونه های دیگری نیز از این توابع وجود دارد مثلاً توابع ، ، که در آنها n عددی طبیعی است.
به چنین توابعی که از از مجموعه اعداد طبیعی به یک مجموعه دیگر تعریف می‌شوند دنباله می‌گوییم. در دنباله اعداد طبیعی زوج، عدد 2 از برد تابع را جمله اول، عدد 4 را جمله دوم و به همین ترتیب عدد 2n را جمله n ام دنباله می‌گوییم. همین شیوه برای سایر دنباله‌ها نیز اعمال می‌شود.
در یک دنباله، اعداد طبیعی در دامنه به گونه‌ای به اعضای برد متناظر می‌شوند که عدد طبیعی متناظر شده بیانگر شماره آن جمله در برد باشد به عنوان مثال در دنباله اعداد طبیعی زوج، عدد 1 در دامنه به عدد 2 در برد که اولین جمله دنباله است متناظر می‌شود و عدد 10 از دامنه به عدد 20 از برد که جمله دهم است متناظر می‌شود و به همین ترتیب عدد n‌ در دامنه به عدد 2n از برد که جمله n ام است متناظر می شود.

ادامه نوشته

اصل اکسترمال

ریاضی دان ورزیده مجهز به یک سری اصول و فنون با دامنه کاربرد وسیع وساده می باشد که می تواند از آنها در حالت های مختلف استفاده نمایید. این اصول و فنون وابسته به موضوعی ویژه نبوده و در کلیه شاخه های ریاضی قابلیت استفاده را دارند. ریاضی دان به این اصول فکر نمی کند بلکه به طور ناخودآگاه از آن مطلع می باشد یکی از این اصول ، ناوردایی بود که در فصل اول از آن بحث شد و اما اصل اکسترمال زمانی که بحث درباره تبدیلات است مورد استفاده واقع می شود. « وقتی شما تبدیل دارید به دنبال ناوردایی باشید.» در این فصل به بحث درباره اصل اکسترمال خواهیم پرداخت که دارای کاربردهای پردامنه ای می باشد که باید با تمرین زیاد آن را به خاطر سپرد. به این اصل روش «متغیر» هم گفته می شود. با این روش می توان به اثبات های بسیار آسان دست یافت.
ابتدا سعی می کنیم وجود یک حالت را به اثبات برسانیم. اصل اکسترمال به ما می گوید که با انتخاب این حالت سعی کنید برخی حالت های ماکزیمم و مینیمم آن را بررسی کنید. حالت حاصل نشان دهنده تقریبی وضعیت خواسته شده است هر چند کاملاً با آن منطبق نمی نماید ولی با کمی تغییر روی توابع به حالت اصلی می توان رسید. اگر راه های مختلفی برای بهینه سازی وجود داشته باشد انتخاب یکی از آنها بسته به نظر ما می باشد. اصل اکسترمال بسیار خلاق است و می تواند الگوریتم روش ساختن آن حالت را به ما نشان دهد.
در این بحث به حل چیدین مثال به کمک اصل اکسترمال در زمینه های هندسه، نظریه گراف،
ترکیبیات، نظریه اعداد خواهیم پرداخت، اما در ابتدا به سه اصل معروف می پردازیم.
الف.هر مجموعه محدود نامشخصی مثل از اعداد صحیح یا حقیقی دارای یک عنصر مینیمم و یک عنصر ماکسیمم است .
ب.هر زیرمجموعه غیر تهی از
اعداد صحیح مثبت دارای کوچک ترین عضو است. این را « اصل خوش ترتیبی» می نامند .
ج.مجموعه نامحدود از اعداد حق یقی ضرورتاً دارای عضو ماکسیمال یا مینیمال نیست. اگر از بالا کران دار باشد، آنگاه دارای کوچک ترین کران بالاست که آن را
سوپریمم می نامیم. اگر از پایین کران دار باشد دارای بزرگترین کران پایین است و آن را اینفیمم می نامیم.
اگر باشد آنگاه و اگر آنگاه


ادامه نوشته

دو گونه شمردن

در این قسمت قصد داریم یکی از زیباترین و در عین حال پراستفاده ترین، روش های مورد استفاده در ترکیبات، به نام دوگونه شمردن یا را بررسی کنیم. قبل از هر چیز، لازم است اندکی به خود این روش اشاره کنیم تا آمادگی بیشتری برای درک مسایل حاصل شود؛ همان گونه که از نام این روش پیدا است، ما قرار است که یک کمیت ترکیباتی را از دو روش متفاوت بشماریم و چون این دو روش، یک چیز را می شمارند، طبیعتا با هم برابرند. در وهله اول، شاید این روش، بسیار بدیهی و ساده به نظر آید؛ اما این گونه نیست و بسیاری از مسایل ترکیباتی با استفاده از این روش حل می شوند؛ همان گونه که اصل لانه کبوتری - با صورت بسیار ساده اش – در حل بسیاری از مسایل به کار می آید؛ در این روش هم – دقیقا مثل اصل لانه کبوتری – فقط از اصل برابری دو مقدار به دست آمده استفاده می کنیم. این روش، در اصل، شامل دو قسمت است که ما در این فصل تا حد امکان به هر دو قسمت که یکی استفاده از این روش در به دست آوردن مقدار یک کمیت و دیگری استفاده از آن در اثبات های ترکیباتی می باشد، اشاره می کنیم. در این فصل، به فراخور موضوع از مثال ها و سوالات المپیادهای گذشته ریاضی و کامپیوتر استفاده نموده به منابع بعضی از موضوعات هم اشاره خواهیم کرد. حال بهتر است که قدم در راه گذشته، با این روش، بیشتر آشنا شویم.

ادامه نوشته